
Introduction to Neural Networks and
Machine Learning

Learning in recurrent networks

Recurrent networksRecurrent networks
• A feed-forward neural net just computes a fixed

sequence of non-linear learned transformationssequence of non linear learned transformations
to convert an input patter into an output pattern.

• If the connectivity has directed cycles, the
network can do much more:
– It can oscillate. This is useful for generating

cycles needed for e g walkingcycles needed for e.g. walking.
– It can settle to point attractors. These are a

good way to represent the meanings of wordsgood way to represent the meanings of words
– It can behave chaotically. This is

computationally interesting and may be useful
in adversarial situations.

• But its a bad idea for most information processing.

More uses of recurrent networks

• They can remember things for a long time.
The network has internal state It can decide to ignore– The network has internal state. It can decide to ignore
the input for a while if it wants to.

– But it is very hard to train a recurrent net to store
i f ti th t i t d til l ti l t (information that is not used until a long time later (more
on this later).

• They can model sequential data in a much more ey ca ode seque a da a a uc o e
natural way than by using a fixed number of
previous inputs to predict the next input (as we did
with the model for predicting the next word)with the model for predicting the next word).
– The hidden state of a recurrent net can carry along

information about a potentially unbounded number of
previous inputs.

• Engineers call it an “infinite impulse response model”.

An advantage of modeling sequential dataAn advantage of modeling sequential data

• We can get a teaching signal by trying to predictWe can get a teaching signal by trying to predict
the next term in a series.
– This seems much more natural than trying to y g

predict one pixel in an image from the other
pixels.

The equivalence between layered,
f df d t d t tfeedforward nets and recurrent nets
w1 w2 time=3

3 4

w1 w2w3 w4

t e 3

w3 w4

w1 w2w3 w4

time=2

Assume that there is a

time=1

Assume that there is a
time delay of 1 in using
each connection.

w1 w2w3 w4

time=0

The recurrent net is
just a layered net that
keeps reusing the time=0keeps reusing the
same weights.

Backpropagation with weight constraintsBackpropagation with weight constraints

• It is easy to modify the
backprop algorithm to
incorporate linear
constraints between the

i ht
21

21

:
:

wwneedwe
wwconstrainTo

Δ=Δ
=

weights.
• We compute the gradients

as usual, and then modify
th di t th t th

: EandEcompute
∂
∂

∂
∂

the gradients so that they
satisfy the constraints.
– So if the weights started

ff ti f i th

21

EE

ww

∂∂

∂∂

off satisfying the
constraints, they will
continue to satisfy them.

21
21

wandwfor
w
E

w
Euse

∂
∂

+
∂
∂

Backpropagation through time
• We could convert the recurrent net into a layered,

feed-forward net and then train the feed-forward
net with weight constraintsnet with weight constraints.
– This is clumsy. It is better to move the algorithm

to the recurrent domain rather than moving the g
network to the feed-forward domain.

• So the forward pass builds up a stack of the
activities of all the units at each time step. The
backward pass peels activities off the stack andbackward pass peels activities off the stack and
computes the error derivatives at each time step.
– After the backward pass we add together the p g

derivatives at all the different times for each
weight.

An irritating extra issueAn irritating extra issue

• We need to specify the initial activity state of all the hidden p y y
and output units.

• We could just fix these initial states to have some default
value like 0 5value like 0.5.

• But it is better to treat the initial states as learned
parameters.
W l th i th l th i ht• We learn them in the same way as we learn the weights.
– Start off with an initial random guess for the initial states.
– At the end of each training sequence, backpropagateAt the end of each training sequence, backpropagate

through time all the way to the initial states to get the
gradient of the error function with respect to each initial
statestate.

– Adjust the initial states by following the negative gradient.

Teaching signals for recurrent networksTeaching signals for recurrent networks
• We can specify targets in

several ways:several ways:
– Specify desired final

activities of all the units
w1 w2w3 w4

– Specify desired activities
of all units for the last few
steps w1 w2w3 w4p

• Good for learning attractors
• It is easy to add in extra

error derivatives as we
backpropagate.

– Specify the desired activity
of a subset of the units.

w1 w2w3 w4

• The other units are “hidden”

A good problem for a recurrent networkA good problem for a recurrent network
• We can train a feedforward net to

do binary addition, but there are y ,
obvious regularities that it cannot
capture:
– We must decide in advance the 11001100

maximum number of digits in
each number.

– The processing applied to the

11001100

p g pp
beginning of a long number
does not generalize to the end
of the long number because it

hidden units

uses different weights.
• As a result, feedforward nets do

not generalize well on the binary 00100110 10100110
addition task.

00100110 10100110

The algorithm for binary addition

no carry carry
1
0

0
1

0
0

1
1

print 1 print 1

1 10 0
0
00 1

no carry carry

1
1

1
0

1
0

0
1

0
10

1
1

no carry
print 0

carry
print 0 1

0
0
1

0
0

1
1

This is a finite state automaton. It decides what transition to
make by looking at the next column. It prints after making y g p g
the transition.
It moves from right to left over the two input numbers.

A recurrent net for binary additionA recurrent net for binary addition

• The network has two input units
d iand one output unit.

• The network is given two input
di it t h ti t

0 0 1 1 0 1 0 0

0 1 0 0 1 1 0 1
digits at each time step.

• The desired output at each time
step is the output for the column

1 0 0 0 0 0 0 1
step is the output for the column
that was provided as input two time
steps ago.
– It takes one time step to update

time
It takes one time step to update
the hidden units based on the
two input digits.

– It takes another time step for the
hidden units to cause the
output.

The connectivity of the networkThe connectivity of the network

• The 3 hidden units have all
possible interconnections in
all directions.
– This allows a hiddenThis allows a hidden

activity pattern at one
time step to vote for the
hidden activity pattern at 3 fully interconnected hidden unitshidden activity pattern at
the next time step.

• The input units have
feedforward connections

3 fully interconnected hidden units

feedforward connections
that allow then to vote for
the next hidden activity
patternpattern.

What the network learns

• It learns four distinct pattern of activity for the 3 hidden
units. These patterns correspond to the nodes in the
finite state automatonfinite state automaton.
– Do not confuse units in a neural network with nodes

in a finite state automaton. Nodes are like activity
vectorsvectors.

– The automaton is restricted to be in exactly one state
at each time. The hidden units are restricted to have
exactly one vector of activity at each timeexactly one vector of activity at each time.

• A recurrent network can emulate a finite state
automaton, but it is exponentially more powerful. With N
hidden neurons it has 2^N possible binary activityhidden neurons it has 2 N possible binary activity
vectors in the hidden units.
– This is important when the input stream has several

separate things going on at once. A finite stateseparate things going on at once. A finite state
automaton cannot cope with this properly.

A huge disappointmentA huge disappointment

• Recurrent neural networks are an extremely powerful class y p
of model.

• If we could train them effectively, we could do wonderful
thi ith ththings with them.

• Unfortunately, it is very difficult to learn long-term
dependencies in a recurrent net.dependencies in a recurrent net.
– The net is stable during the forward pass because, at

each time step, activities are bounded between 0 and 1
b i th i idby using the sigmoid.

– But the backward pass is linear. It uses the slope of the
sigmoid as a gain factor, but the backpropagated signalsigmoid as a gain factor, but the backpropagated signal
can blow up exponentially if the weights get big.

Why the back-propagated gradient blows up

• If we start a trajectory within an attractor, small changes in
where we start make no difference to where we end up.

• But if we start almost exactly on the boundary tiny changes• But if we start almost exactly on the boundary, tiny changes
can make a huge difference.

Saved by some heavy math
• Some directions have big gradients but big curvatures.

– So if you change the weights in those directions theSo if you change the weights in those directions, the
initial progress is good, but you very quickly start
making things worse again.

• Other directions can have tiny gradients but even tinier
curvatures.
– Changing the weights in those directions makes slow– Changing the weights in those directions makes slow

progress that lasts for many weight changes.
• There is a very strong correlation between the gradient

and the curvature.
– It’s the gradient/curvature ratio that matters.

A l ti i fi d di ti ith ll– A very clever optimizer can find directions with small
gradients but good ratios.

