
Introduction to Neural Networks and 
Machine Learning

Learning in  recurrent networks



Recurrent networksRecurrent networks
• A feed-forward neural net just computes a fixed 

sequence of non-linear learned transformationssequence of non linear learned transformations 
to convert an input patter into an output pattern.

• If the connectivity has directed cycles, the 
network can do much more:
– It can oscillate. This is useful for generating 

cycles needed for e g walkingcycles needed for e.g. walking.
– It can settle to point attractors. These are a 

good way to represent the meanings of wordsgood way to represent the meanings of words
– It can behave chaotically. This is 

computationally interesting and may be useful 
in adversarial situations.

• But its a bad idea for most information processing.



More uses of recurrent networks

• They can remember things for a long time.
The network has internal state It can decide to ignore– The network has internal state. It can decide to ignore 
the input for a while if it wants to.

– But it is very hard to train a recurrent net to store 
i f ti th t i t d til l ti l t (information that is not used until a long time later (more 
on this later).

• They can model sequential data in a much more ey ca ode seque a da a a uc o e
natural way than by using a fixed number of 
previous inputs to predict the next input (as we did 
with the model for predicting the next word)with the model for predicting the next word).
– The hidden state of a recurrent net can carry along  

information about a potentially unbounded number of 
previous inputs.

• Engineers call it an “infinite impulse response model”.



An advantage of modeling sequential dataAn advantage of modeling sequential data

• We can get a teaching signal by trying to predictWe can get a teaching signal by trying to predict 
the next term in a series. 
– This seems much more natural than trying to y g

predict one pixel in an image from the other 
pixels. 



The equivalence between layered, 
f df d t d t tfeedforward nets and recurrent nets
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same weights.



Backpropagation with weight constraintsBackpropagation with weight constraints

• It is easy to modify the 
backprop algorithm to 
incorporate linear 
constraints between the 
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Backpropagation through time
• We could convert the recurrent net into a layered, 

feed-forward net and then train the feed-forward 
net with weight constraintsnet with weight constraints.
– This is clumsy. It is better to move the algorithm

to the recurrent domain rather than moving the g
network to the feed-forward domain.

• So the forward pass builds up a stack of the 
activities of all the units at each time step. The 
backward pass peels activities off the stack andbackward pass peels activities off the stack and 
computes the error derivatives at each time step.
– After the backward pass we add together the p g

derivatives at all the different times for each 
weight.



An irritating extra issueAn irritating extra issue

• We need to specify the initial activity state of all the hidden p y y
and output units. 

• We could just fix these initial states to have some default 
value like 0 5value like 0.5.

• But it is better to treat the initial states as learned 
parameters.
W l th i th l th i ht• We learn them in the same way as we learn the weights.
– Start off with an initial random guess for the initial states.
– At the end of each training sequence, backpropagateAt the end of each training sequence, backpropagate 

through time all the way to the initial states  to get the 
gradient of the error function with respect to each initial 
statestate.

– Adjust the initial states by following the negative gradient.



Teaching signals for recurrent networksTeaching signals for recurrent networks
• We can specify targets in 

several ways:several ways:
– Specify desired final 

activities of all the units
w1 w2w3 w4

– Specify desired activities 
of all units for the last few 
steps w1 w2w3 w4p

• Good for learning attractors
• It is easy to add in extra 

error derivatives as we 
backpropagate.

– Specify the desired activity 
of a subset of the units.

w1 w2w3 w4

• The other units are “hidden”



A good problem for a recurrent networkA good problem for a recurrent network
• We can train a feedforward net to 

do binary addition, but there are y ,
obvious regularities that it cannot 
capture:
– We must decide in advance the 11001100

maximum number of digits in 
each number.

– The processing applied to the 

11001100

p g pp
beginning of a long number 
does not generalize to the end 
of the long number because it 

hidden units

uses different weights.
• As a result, feedforward nets do 

not generalize well on the binary 00100110 10100110
addition task.

00100110 10100110



The algorithm for binary addition
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This is a finite state automaton. It decides what transition to 
make by looking at the next column. It prints after making y g p g
the transition.                                                                         
It moves from right to left over the two input numbers.



A recurrent net for binary additionA recurrent net for binary addition

• The network has two input units 
d iand one output unit.

• The network is given two input 
di it t h ti t

0 0 1 1 0 1 0 0

0 1 0 0 1 1 0 1
digits at each time step.

• The desired output at each time 
step is the output for the column

1 0 0 0 0 0 0 1
step is the output for the column 
that was provided as input two time 
steps ago.
– It takes one time step to update

time
It takes one time step to update 
the hidden units based on the 
two input digits.

– It takes another time step for the 
hidden units to cause the 
output.



The connectivity of the networkThe connectivity of the network

• The 3 hidden units have all 
possible interconnections in 
all directions.
– This allows a hiddenThis allows a hidden 

activity pattern at one 
time step to vote for the 
hidden activity pattern at 3 fully interconnected hidden unitshidden activity pattern at 
the next time step.

• The input units have 
feedforward connections

3 fully interconnected hidden units

feedforward connections 
that allow then to vote for 
the next hidden activity 
patternpattern.



What the network learns

• It learns four distinct pattern of activity for the 3 hidden 
units. These patterns correspond to the nodes in the 
finite state automatonfinite state automaton.
– Do not confuse units in a neural network with nodes 

in a finite state automaton. Nodes are like activity 
vectorsvectors.

– The automaton is restricted to be in exactly one state 
at each time. The hidden units are restricted to have 
exactly one vector of activity at each timeexactly one vector of activity at each time.

• A recurrent network can emulate a finite state 
automaton, but it is exponentially more powerful. With N 
hidden neurons it has 2^N possible binary activityhidden neurons it has 2 N possible binary activity 
vectors in the hidden units. 
– This is important when the input stream has several 

separate things going on at once. A finite stateseparate things going on at once. A finite state 
automaton cannot cope with this properly.



A huge disappointmentA huge disappointment

• Recurrent neural networks are an extremely powerful class y p
of model.

• If we could train them effectively, we could do wonderful 
thi ith ththings with them.

• Unfortunately, it is very difficult to learn long-term 
dependencies in a recurrent net.dependencies in a recurrent net.
– The net is stable during the forward pass because, at 

each time step, activities are bounded between 0 and 1 
b i th i idby using the sigmoid.

– But the backward pass is linear. It uses the slope of the 
sigmoid as a gain factor, but the backpropagated signalsigmoid as a gain factor, but the backpropagated signal 
can blow up exponentially if the weights get big.



Why the back-propagated gradient blows up

• If we start a trajectory within an attractor, small changes in 
where we start make no difference to where we end up.

• But if we start almost exactly on the boundary tiny changes• But if we start almost exactly on the boundary, tiny changes 
can make a huge difference.



Saved by some heavy math
• Some directions have big gradients but big curvatures. 

– So if you change the weights in those directions theSo if you change the weights in those directions, the 
initial progress is good, but you very quickly start 
making things worse again.

• Other directions can have tiny gradients but even tinier 
curvatures.
– Changing the weights in those directions makes slow– Changing the weights in those directions makes slow 

progress that lasts for many weight changes.
• There is a very strong correlation between the gradient 

and the curvature. 
– It’s the gradient/curvature ratio that matters. 

A l ti i fi d di ti ith ll– A very clever optimizer can find directions with small 
gradients but good ratios.


